Comparisons of Activation Energies for Dimethyl Sulfoxide Rotations in the Inner Phase of Seven Carcerands

Siavash K. Kurdistani, Timothy A. Robbins and Donald J. Cram*

Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeies, CA 90095, USA

The syntheses and characterizations of nine new carceplexes are reported, the ΔG^* values for rotations of Me₂SO in the inner phases of seven of them are determined and found to be unaffected by changes in bulk solvent.

Prior papers reported the synthesis of three carceplexes 1 $\rm{O}\rm{G}$ (G $=$ Me₂SO, Me₂NCOMe or Me₂NCHO) by shell closures with $BrCH_2Cl-Cs_2CO_3$ or two molecules of tetrol 3 in G as solvent.¹ Similarly, two molecules of diol 4 were shell closed in the same three solvents to give three hemicarceplexes $2OG$ (G = Me2S0, Me2NCOMe and Me2NCH0).2 However, when triol *5* was submitted to shell closure in Me₂SO, hemicarceplex 9° Me₂SO and carceplex 14 $^{\circ}$ Me₂SO were obtained, corresponding to the two possible ways the rims of the triols can be attached to one another.2 Furthermore, 1H NMR spectra of the guest of 1° Me₂SO demonstrated that, at temperatures below $\overline{0}$ °C, the guests' rotations relative to the host were slow on the spectral timescale.

The current study has three objectives. The first is to determine how solvent changes and rim-located substituents on the bowls affect the balance of products produced by the different ways rim-to-rim coupling can occur. The second is to use the activation free energies and coalescence temperatures for incarcerated guest rotations as a measure of the cavity size of the host. The third is to determine whether bulk solvent change alters the activation free energies for rotations.

Tetrol 3¹ when treated with excess MeI, EtI or PhCH₂Br in Me₂NCHO containing 1.5 equiv. of CsF³ at 40 °C, gave *20-25%* yields of the respective easily-purified triols, **6, 7** and 8.[†] Shell closure of each triol was conducted in Me₂SO, Me₂NCOMe and Me₂NCHO (BrCH₂Cl-Cs₂CO₃, 65 to 100 °C, 3-5 d)2 to give the product distributions shown in Table **1.**

Sherman *et al.* have demonstrated that the yields of shell closed products of an analogue of tetrol $3 (R = Me)$ rather than $CH₂CH₂Ph$) correlate with the stability of hydrogen bonded dimers as solvent (guest) is changed.⁴ Such an effect would explain why tris-bridged products generally dominated over the bis-bridged products, three hydrogen bonds being more stabilizing than two. There is no correlation of shell-closure yields with

Table 1 Distribution of shell-closed products

a Taken from ref. 1.

90G X = H, **100G** X = OH, llOG, **X** = OMe, **140G** X = H, **150G X** =OMe, **1-1 7 R** = CH2CH2Ph **120G X** = OEt, **130G** X = OCH2Ph **160G,** X = *OEt,* **170G** X = OCH2Ph

the size of the rim substituents running from $X = H$ to $X =$ OCH2Ph. This fact strongly suggests that in the ground and transition states for shell closures, the Me, Et and CH2Ph groups are oriented away from the bowl cavities in a conformation which minimizes the $O-C$ dipole-dipole repulsions in the attached **1,2,3-trisoxygen-substituted** benzenes in the study.

Table 2 shows the coalescence temperatures (T_c) and activation free energies (ΔG^{\ddagger}) for rotations of Me₂SO relative to the hosts for seven carceplexes, determined using a Bruker MA-360 MHz 'H NMR spectrometer. The method employed was modelled after that previously reported for $1 \circ G$, in which the signals for the guest's methyl proton singlets change upon cooling. \ddagger Their occurrence at δ values below 0 (SiMe₄ standard) simplified their observation. Unfortunately, simplified their observation. Unfortunately, $2OMe₂SO$ and $10OMe₂SO$ were too insoluble at low temperatures to be included in the study.

The crystal structures of 1° Me₂NCOMe¹ and 9° Me₂-NCH02 demonstrated that the unshared electron pairs of the interhemispheric $OCH₂O$ bridges orient inward toward the cavity and the hydrogens outward away from the cavity. Corey-Pauling-Koltun molecular models of the carceplexes of Table 2 indicate that such a conformation is mandatory for the OMe, OEt and OCH₂Ph groups found in 11-13, 15 and 16. The ΔG^{\ddagger} values for rotation of the Me₂SO guest about the short axes of the host for 11-13 are all within experimental error of one another at 12.3 ± 0.3 kcal mol⁻¹ (1 cal = 4.184 J), indicating the three cavities have about the same size and shape in concert with expectations based on model examination. The ΔG [‡] and T_c values for 13 in $(CD_2)_4O$, $CDCl_3$, CD_2Cl_2 and $CDCl_2CDCl_2$ are identical as expected, since the shell insulates the $Me₂SO$ from varying solvent effects. When the OR groups are replaced with

Table 2 Free energies of activation for rotations of incarcerated Me₂SO⁺

Carceplex	Solvent	$\Delta G^{\ddagger\prime}$ $kcal$ mol -1	T_c/K
$1 \odot$ Me ₂ SO	CDCl ₃	13.6	275
9 $Me2$ SO	(CD ₂) ₄ O	9.8	193
11 OMe ₂ SO	(CD ₂) ₄ O	12.1	261
12 OMe ₂ SO	(CD ₂) ₄ O	12.6	272
13 OMe ₂ SO	(CD ₂) ₄ O	12.1	258
13 Me ₅ O	CDCl ₃	12.1	258
13 OMe ₂ SO	CD ₂ Cl ₂	12.1	258
13 \odot Me ₂ SO	CDCl ₂ CDCl ₂	12.1	258
15 \odot Me ₂ SO	(CD ₂) ₄ O	12.1	261
16 \odot Me ₂ SO	$(CD_2)_4O$	13.0	283

H as in 9, the activation energy for rotation decreases to 9.8 kcal mol^{-1} since the cavity becomes somewhat wider in the equatorial region of the globe-shaped host. When the two OR groups are replaced by a fourth $OCH₂O$ group as in 1, the whole structure becomes more rigid (model examination), and the ΔG^{\ddagger} value increases to 13.6 kcal mol⁻¹.

In 15 and 16, the two hemispheres are bridged by only two $OCH₂O$ groups and the other two sets of positions each contain OH and OR groups. Model examination shows that the carcerands become more crowded and rigid as the R of the OR group increases in bulk, elongating the cavity along the long polar axis but shortening it along the shorter equatorial axes. Inhibition of $Me₂SO$ rotation in models is more limited by the length of the equatorial axes. This effect appears to take hold in passing from 15OMe_2 SO to 16OMe_2 SO, in which $X = \text{OMe}$ $(\Delta G^{\ddagger} = 12.1 \text{ kcal mol}^{-1})$ and X = OEt $(\Delta G^{\ddagger} = 13.0 \text{ J})$ kcal mol⁻¹), respectively. Compound 170Me₂SO failed to form, probably for steric reasons.

The authors warmly thank the US Public Health Service for supporting Grant GM-12640.

Received, 24th March 1995, Corn. 5/01901J

Footnotes

t All new compounds gave C and **H** elementary analyses within 0.30% of theory, M+ *mlz* signals of substantial intensity in their MS or **FAB-MS,** and ¹H NMR spectra consistent with their structures.

 \ddagger Values for ΔG^{\ddagger} of rotation were calculated using $\Delta G^{\ddagger} = 19.14 T_c$ [9.97 $+ \log(T_c/\Delta v)$ where T_c is the coalescence temperature and Δv is the difference in chemical shift of the Me₂SO guest proton signals.

References

- 1 J. C. Sherman and D. J. Cram, J. *Am. Chem.* Soc., 1989,111,4527; J. C. Sherman, C. B. Knobler and D. J. Cram, *J. Am. Chem. Soc.*, 1991, 113, 2194.
- 2 M. E. Tanner, C. B. Knobler and D. J. Cram, *J. Am. Chem. Sac..* 1990, **112,** 1659; D. J. Cram, M. E. Tanner and C. B. Knobler, J. *Am. Chem. So(..,* 1991, 113, 7717.
- *3* L. C. Groen, B. H. M. Ruel, A. Casnati, W. Verboom, A. Pochini, R. Ungaro and D. N. Reinhoudt, *Tetrahedron,* 1991, **47,** 8379.
- 4 R. G. Chapman, N. Chopra, **E.** D. Cochien and J. C. Sherman, J. *Am. Chem. Soc.,* 1994, 116, 369; R. G. Chapman, J. Fraser, N. Chopra, E. D. Cochien and J. C. Sherman, *Symposium Honoring* D. *J. Cram,* UCLA, Los Angeles, CA, March 1994.