Comparisons of Activation Energies for Dimethyl Sulfoxide Rotations in the Inner Phase of Seven Carcerands

Siavash K. Kurdistani, Timothy A. Robbins and Donald J. Cram*

Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA

The syntheses and characterizations of nine new carceplexes are reported, the ΔG^{\ddagger} values for rotations of Me₂SO in the inner phases of seven of them are determined and found to be unaffected by changes in bulk solvent.

Prior papers reported the synthesis of three carceplexes $1 \odot G$ (G = Me₂SO, Me₂NCOMe or Me₂NCHO) by shell closures with BrCH₂Cl-Cs₂CO₃ or two molecules of tetrol **3** in G as solvent.¹ Similarly, two molecules of diol **4** were shell closed in the same three solvents to give three hemicarceplexes $2 \odot G$ (G = Me₂SO, Me₂NCOMe and Me₂NCHO).² However, when triol **5** was submitted to shell closure in Me₂SO, hemicarceplex $9 \odot Me_2SO$ and carceplex $14 \odot Me_2SO$ were obtained, corresponding to the two possible ways the rims of the triols can be attached to one another.² Furthermore, ¹H NMR spectra of the guest of $1 \odot Me_2SO$ demonstrated that, at temperatures below 0 °C, the guests' rotations relative to the host were slow on the spectral timescale.

The current study has three objectives. The first is to determine how solvent changes and rim-located substituents on the bowls affect the balance of products produced by the different ways rim-to-rim coupling can occur. The second is to use the activation free energies and coalescence temperatures for incarcerated guest rotations as a measure of the cavity size of the host. The third is to determine whether bulk solvent change alters the activation free energies for rotations.

Tetrol **3**¹ when treated with excess MeI, EtI or PhCH₂Br in Me₂NCHO containing 1.5 equiv. of CsF³ at 40 °C, gave 20–25% yields of the respective easily-purified triols, **6**, **7** and **8**.† Shell closure of each triol was conducted in Me₂SO, Me₂NCOMe and Me₂NCHO (BrCH₂Cl–Cs₂CO₃, 65 to 100 °C, 3-5 d)² to give the product distributions shown in Table 1.

Sherman *et al.* have demonstrated that the yields of shell closed products of an analogue of tetrol **3** (R = Me rather than CH₂CH₂Ph) correlate with the stability of hydrogen bonded

dimers as solvent (guest) is changed.⁴ Such an effect would explain why tris-bridged products generally dominated over the bis-bridged products, three hydrogen bonds being more stabilizing than two. There is no correlation of shell-closure yields with

Table 1 Distribution of shell-closed products

		Yields (%)		
X	Solvent (G)		HO O G O OH	
OMe	Me ₂ SO	11	11	
OMe	Me ₂ NCHO	24	0	
OMe	Me ₂ NCOMe	0	0	
OEt	Me_2SO	22	11	
OEt	Me ₂ NCHO	20	0	
OEt	Me ₂ NCOMe	0	0	
OCH ₂ Ph	Me ₂ SO	15	0	
OCH ₂ Ph	Me ₂ NCHO	40	0	
OCH ₂ Ph	Me ₂ NCOMe	12	0	
\mathbf{H}^{a}	Me ₂ SO	51	5	
H^a	Me ₂ NCHO	20	0	
\mathbf{H}^{a}	Me ₂ NCOMe	42	0	

^a Taken from ref. 1.

 $1-17 R = CH_2 CH_2 Ph$

90G X = H, **100**G X = OH, **110**G, X = OMe, **120**G X = OEt, **130**G X = OCH₂Ph

14⊚G X = H, 15⊚G X = OMe, 16⊚G, X = OEt, 17⊚G X = OCH₂Ph

the size of the rim substituents running from X = H to $X = OCH_2Ph$. This fact strongly suggests that in the ground and transition states for shell closures, the Me, Et and CH₂Ph groups are oriented away from the bowl cavities in a conformation which minimizes the O–C dipole–dipole repulsions in the attached 1,2,3-trisoxygen-substituted benzenes in the study.

Table 2 shows the coalescence temperatures (T_c) and activation free energies (ΔG^{\ddagger}) for rotations of Me₂SO relative to the hosts for seven carceplexes, determined using a Bruker MA-360 MHz ¹H NMR spectrometer. The method employed was modelled after that previously reported for 1 \odot G, in which the signals for the guest's methyl proton singlets change upon cooling.[‡] Their occurrence at δ values below 0 (SiMe₄ standard) simplified their observation. Unfortunately, $2 \odot$ Me₂SO and $10 \odot$ Me₂SO were too insoluble at low temperatures to be included in the study.

The crystal structures of $1 \odot Me_2NCOMe^1$ and $9 \odot Me_2-NCHO^2$ demonstrated that the unshared electron pairs of the interhemispheric OCH₂O bridges orient inward toward the cavity and the hydrogens outward away from the cavity. Corey–Pauling–Koltun molecular models of the carceplexes of Table 2 indicate that such a conformation is mandatory for the OMe, OEt and OCH₂Ph groups found in 11–13, 15 and 16. The ΔG^{\ddagger} values for rotation of the Me₂SO guest about the short axes of the host for 11–13 are all within experimental error of one another at 12.3 ± 0.3 kcal mol⁻¹ (1 cal = 4.184 J), indicating the three cavities have about the same size and shape in concert with expectations based on model examination. The ΔG^{\ddagger} and T_c values for 13 in (CD₂)₄O, CDCl₃, CD₂Cl₂ and CDCl₂CDCl₂ are identical as expected, since the shell insulates the Me₂SO from varying solvent effects. When the OR groups are replaced with

Table 2 Free energies of activation for rotations of incarcerated Me₂SO⁺

Carceplex	Solvent	$\Delta G^{\ddagger}/$ kcal mol $^{-1}$	<i>T</i> _c /K
1⊙Me ₂ SO	CDCl ₃	13.6	275
9⊙Me ₂ SO	$(CD_2)_4O$	9.8	193
11OMe ₂ SO	$(CD_2)_4O$	12.1	261
12 ^O Me ₂ SO	$(CD_2)_4O$	12.6	272
13⊙Me ₂ SO	$(CD_2)_4O$	12.1	258
13⊙Me ₂ SO	CDCl ₃	12.1	258
$13 \odot Me_2 SO$	CD_2Cl_2	12.1	258
$13 \odot Me_2 SO$	$CDCl_2CDCl_2$	12.1	258
15 ^O Me ₂ SO	$(CD_2)_4O$	12.1	261
16 ^O Me ₂ SO	$(CD_2)_4O$	13.0	283

H as in 9, the activation energy for rotation decreases to 9.8 kcal mol⁻¹ since the cavity becomes somewhat wider in the equatorial region of the globe-shaped host. When the two OR groups are replaced by a fourth OCH₂O group as in 1, the whole structure becomes more rigid (model examination), and the ΔG^{\ddagger} value increases to 13.6 kcal mol⁻¹.

In **15** and **16**, the two hemispheres are bridged by only two OCH₂O groups and the other two sets of positions each contain OH and OR groups. Model examination shows that the carcerands become more crowded and rigid as the R of the OR group increases in bulk, elongating the cavity along the long polar axis but shortening it along the shorter equatorial axes. Inhibition of Me₂SO rotation in models is more limited by the length of the equatorial axes. This effect appears to take hold in passing from **15** \odot Me₂SO to **16** \odot Me₂SO, in which X = OMe ($\Delta G^{\ddagger} = 12.1$ kcal mol⁻¹) and X = OEt ($\Delta G^{\ddagger} = 13.0$ kcal mol⁻¹), respectively. Compound **17** \odot Me₂SO failed to form, probably for steric reasons.

The authors warmly thank the US Public Health Service for supporting Grant GM-12640.

Received, 24th March 1995, Com. 5/01901J

Footnotes

[†] All new compounds gave C and H elementary analyses within 0.30% of theory, M⁺ m/z signals of substantial intensity in their MS or FAB-MS, and ¹H NMR spectra consistent with their structures.

‡ Values for ΔG^{\ddagger} of rotation were calculated using $\Delta G^{\ddagger} = 19.14 T_c [9.97 + \log(T_c/\Delta v)]$ where T_c is the coalescence temperature and Δv is the difference in chemical shift of the Me₂SO guest proton signals.

References

- J. C. Sherman and D. J. Cram, *J. Am. Chem. Soc.*, 1989, **111**, 4527; J. C. Sherman, C. B. Knobler and D. J. Cram, *J. Am. Chem. Soc.*, 1991, **113**, 2194.
- M. E. Tanner, C. B. Knobler and D. J. Cram, J. Am. Chem. Soc., 1990, 112, 1659; D. J. Cram, M. E. Tanner and C. B. Knobler, J. Am. Chem. Soc., 1991, 113, 7717.
- 3 L. C. Groen, B. H. M. Ruël, A. Casnati, W. Verboom, A. Pochini, R. Ungaro and D. N. Reinhoudt, *Tetrahedron*, 1991, 47, 8379.
- 4 R. G. Chapman, N. Chopra, E. D. Cochien and J. C. Sherman, J. Am. Chem. Soc., 1994, 116, 369; R. G. Chapman, J. Fraser, N. Chopra, E. D. Cochien and J. C. Sherman, Symposium Honoring D. J. Cram, UCLA, Los Angeles, CA, March 1994.